
Bilkent University

CS353 DATABASE SYSTEMS

GROUP ID: 28

UptownFANK Project Tracking Software

Design Report

Authors:

Fatbardh Feta

Alemdar Salmoor

Naisila Puka

Kunduz Efronova

Student IDs:

21600334

21500430

21600336

21600469

April 5, 2019

Design Report UptownFANK

Contents

1 Introduction 4

2 Revised ER Diagram 4

2.1 Diagram Updates . 4

2.2 ER Diagram . 6

3 Relation Schemas 7

3.1 BasicUser . 7

3.2 Phone . 7

3.3 SuperUser . 8

3.4 Team . 9

3.5 Member . 9

3.6 Board . 10

3.7 WorksOn . 11

3.8 List . 11

3.9 Card . 12

3.10 PerformsTask . 13

3.11 CheckList . 13

3.12 Item . 14

3.13 Comment . 15

3.14 Replies . 16

3.15 Upvotes . 16

3.16 Attachment . 17

3.17 Label . 18

3.18 Labelling . 19

4 Functional Dependencies and Normalization 19

5 Functional Components 19

5.1 Use Case Diagram . 20

5.2 Use Case Scenarios . 21

1

Design Report UptownFANK

5.2.1 CreateTeam . 21

5.2.2 ManageTeam . 21

5.2.2.1 DeleteTeam . 22

5.2.2.2 AddMember . 22

5.2.2.3 RemoveMember . 23

5.2.3 CreateBoard . 23

5.2.4 AddList . 24

5.2.5 SetUserPrivileges . 24

5.2.6 ManageBoard . 25

5.2.6.1 ManageCards . 25

5.2.6.2 ManageLists . 26

5.2.6.3 Archive . 26

5.2.6.4 AssignUser . 27

5.2.7 AddAttachment . 27

5.2.8 AddLabel . 28

5.2.9 ManageAttachments . 28

5.2.10 ManageLabels . 29

5.2.11 AddChecklist . 29

5.2.11.1 CompleteItem . 30

5.2.12 Comment . 30

5.2.12.1 Reply . 31

5.2.13 Register . 31

5.2.13.1 RegisterAsSuperUser 32

5.2.13.2 RegisterAsBasicUser 32

5.3 Data Structures . 33

6 User Interface Design and Corresponding SQL Statements 34

6.1 Register and Login Functionalities . 35

6.1.1 Register Screen . 35

6.1.1.1 BasicUser . 35

6.1.1.2 SuperUser . 36

6.1.2 Login Screen . 37

6.2 View Main Personal Info . 38

2

Design Report UptownFANK

6.2.1 Personal Homescreen . 38

6.3 View Boards/Lists/Cards . 40

6.3.1 View Board Screen . 40

6.3.2 View Card Screen . 41

6.4 Create Team and Board . 43

6.4.1 Create Team Screen . 43

6.4.2 Create Board Screen . 44

6.5 Create List and Card . 45

6.5.1 Create List Screen . 45

6.5.2 Create Card Screen . 46

6.6 Add CheckLists, Attachments, Labels 47

6.6.1 Create CheckList Screen . 47

6.6.2 Create Label Screen . 48

7 Advanced Database Components 48

7.1 Reports . 49

7.2 Views . 50

7.2.1 Owned Boards . 50

7.2.2 Users Assigned to a Card . 50

7.2.3 Cards a User Is Assigned to 50

7.3 Triggers . 51

7.4 Constraints . 51

7.5 Stored Procedures . 52

8 Implementation Plan 53

9 Online Access 53

10 Conclusion 53

3

Design Report UptownFANK

1 Introduction

This is the design report for our project tracking software called UptownFank. Up-

townFank aims to be a simple useful tool for tracking different projects, usually

shared between some team members. It will pave the way for maintaining project

communication and keeping track of the accomplished and to-do tasks. The design

report starts the explanation of the design of the database, followed by the functional

components, user interface design and lastly, advanced database components.

2 Revised ER Diagram

2.1 Diagram Updates

We made the following changes to our proposed ER diagram:

Deletions:

• Since our project tracking software will create the possibility for superusers

to create different boards, we realized that having both Project and Board

entities was redundant since a project turned out to be equivalent to a board.

Therefore, we deleted Project entity and from this point forward we identify

a project with a board.

• As a consequence of previous deletion, we deleted Contains and Owns binary

relationships because they were related to the Project entity in one side.

• We have deleted the following statistical attributes:

– cardsNo from List entity

– size from Team entity

– itemsNo from CheckList

– upvotesNo and repliesNo from Comment

4

Design Report UptownFANK

These attributes can be retrieved by a simple count query, so they formed

redundant information in our database.

Updates:

• We changed Comment entity from strong to weak entity, since a comment

depends on its parent card. In other words, a comment cannot exist without

a card that it belongs to.

• Our system was previously using “maintains” relationship between a Board

and a Superuser entity. However, this was ambiguous. Therefore, we changed

from “maintains” to “owns”. This means the a Board is owned by exactly one

Superuser entity, and that specific superuser has all maintenance rights upon

that board (create, delete, update, etc.).

Insertions:

• Our system was not providing a way for a BasicUser to upvote a specific

comment. For this reason, we added “upvotes” relation between BasicUser

and Comment entities to make this possible.

• We deleted the Project entity, but this entity had two important attributes:

requirements for any specific project obligations and estimatedTime for giving

an idea of the size of the project (e.g. a 3-month project is a small one which

could be part of a term project for a specific university course). Since we

identified a project with a board, we added these two attributes to the Board

entity.

• The system was not saving any CheckList items. For this reason, we added

Item entity as a weak one depending on CheckList. That is, each item ex-

ists only within a CheckList entity. We also added a “complete” relationship

between Item and BasicUser entity in order to save who completed the item.

• The system now provides a proper “Reply” functionality to a comment. Not

only a BasicUser can upvote, but he/she can also reply to a specific comment,

provided by our additional “replies” relationship between a Comment and

another Comment entity.

5

Design Report UptownFANK

2.2 ER Diagram

Here we present our revised entity-relationship diagram created in Draw.io [1], based

on the updates explained.

Figure 1: Entity-Relationship Diagram

6

Design Report UptownFANK

3 Relation Schemas

In this section we will “convert” the system’s ER diagram into a set of relations,

where for each relation attribute domains, candidate keys, primary key and foreign

keys are specified, as well as their normal form.

3.1 BasicUser

Relational Model: BasicUser(userID, name, email, password, address)

Functional Dependencies: {(userID −→ name, email, password, address), (email

−→ userID)}

Primary Key: {userID}

Candidate Keys: {{userID}, {email}}

Foreign Keys: {}

Normal Form: BCNF

Table Definition:

CREATE TABLE BasicUser(

userID INTEGER PRIMARY KEY AUTO_INCREMENT ,

name VARCHAR (50) NOT NULL ,

email VARCHAR (50) NOT NULL ,

password VARCHAR (50) NOT NULL ,

address VARCHAR (50) NOT NULL

);

3.2 Phone

Relational Model: Phone(userID, phoneNo)

Functional Dependencies: {}

7

Design Report UptownFANK

Primary Key: {userID, phoneNo}

Candidate Keys: {{userID, phoneNo}}

Foreign Keys: {(userID −→ BasicUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Phone(

userID INTEGER NOT NULL ,

phoneNumber VARCHAR (20) NOT NULL ,

PRIMARY KEY (userID , phoneNumber),

FOREIGN KEY userID references BasicUser(userID)

);

3.3 SuperUser

Relational Model: SuperUser(userID, organization)

Functional Dependencies: {(userID −→ organization)}

Primary Key: {userID}

Candidate Keys: {{userID}}

Foreign Keys: {(userID −→ BasicUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE SuperUser(

userID INTEGER PRIMARY KEY AUTO_INCREMENT ,

organization VARCHAR (200) NOT NULL ,

FOREIGN KEY (userID) REFERENCES BasicUser(userID)

);

8

Design Report UptownFANK

3.4 Team

Relational Model: Team(teamID, name, affiliation, supervisor, key)

Functional Dependencies: {(teamID −→ name, affiliation, supervisor, key), (key

−→ teamID)}

Primary Key: {userID}

Candidate Keys: {{userID}, {key}}

Foreign Keys: {(supervisor −→ SuperUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Team(

teamID INTEGER PRIMARY KEY ,

name VARCHAR (50) NOT NULL ,

affiliation VARCHAR (200) NOT NULL ,

supervisor INTEGER NOT NULL ,

key INTEGER UNIQUE ,

FOREIGN KEY supervisor REFERENCES SuperUser(userID)

);

3.5 Member

Relational Model: Member(userID, teamID)

Functional Dependencies: {}

Primary Key: {userID, teamID}

Candidate Keys: {{userID, teamID}}

Foreign Keys: {(userID −→ BasicUser.userID), (teamID −→ Team.teamID)}

Normal Form: BCNF

9

Design Report UptownFANK

Table Definition:

CREATE TABLE Member(

userID INTEGER NOT NULL ,

teamID INTEGER NOT NULL ,

PRIMARY KEY (userID , teamID),

FOREIGN KEY userID REFERENCES BasicUser(userID),

FOREIGN KEY teamID REFERENCES Team(teamID)

);

3.6 Board

Relational Model: Board(boardID, name, description, priority, color, require-

ments, estimatedTime, ownerID)

Functional Dependencies: {(boardID −→ name, description, priority, color, re-

quirements, estimatedTime, ownerID)}

Primary Key: {boardID}

Candidate Keys: {{boardID}}

Foreign Keys: {(owner −→ SuperUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Board(

boardID INTEGER PRIMARY KEY ,

name VARCHAR (50) NOT NULL ,

description VARCHAR (1000) NOT NULL ,

priority INTEGER CHECK(priority >= 0 AND priority <=5),

color VARCHAR (50) DEFAULT ’YELLOW ’ NOT NULL ,

requirements VARCHAR (1000) NOT NULL ,

estimatedTime DATETIME NOT NULL ,

FOREIGN KEY ownerID REFERENCES SuperUser(userID));

10

Design Report UptownFANK

3.7 WorksOn

Relational Model: WorksOn(boardID, teamID)

Functional Dependencies: {(boardID −→ teamID)}

Primary Key: {boardID}

Candidate Keys: {{boardID}}

Foreign Keys: {(boardID −→ Board.boardID), (teamID −→ Team.teamID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE WorksOn(

boardID INTEGER PRIMARY KEY NOT NULL ,

teamID INTEGER NOT NULL ,

FOREIGN KEY boardID REFERENCES Board(boardID),

FOREIGN KEY teamID REFERENCES Team(teamID)

);

3.8 List

Relational Model: List(listID, name, finishedStatus, color, description, activity,

boardID)

Functional Dependencies: {(listID −→ name, finishedStatus, color, description,

activity, boardID)}

Primary Key: {listID}

Candidate Keys: {{listID}}

Foreign Keys: {(boardID −→ Board.boardID)}

Normal Form: BCNF

Table Definition:

11

Design Report UptownFANK

CREATE TABLE List(

listID INTEGER PRIMARY KEY ,

name VARCHAR (50) NOT NULL ,

finishedStatus VARCHAR (5),

color VARCHAR (30) DEFAULT ’YELLOW ’ NOT NULL ,

description VARCHAR (1000) ,

activity VARCHAR (1000) ,

FOREIGN KEY boardID REFERENCES Board(boardID),

CHECK(finishedStatus IN(’True’, ’False’)),

);

3.9 Card

Relational Model: Card(cardID, name, priority, description, dueDate, listID,

archived, finished)

Functional Dependencies: {(cardID −→ name, priority, description, dueDate,

listID, archived, finished)}

Primary Key: {cardID}

Candidate Keys: {{cardID}}

Foreign Keys: {(listID −→ List.listID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Card(

cardID INTEGER PRIMARY KEY ,

name VARCHAR (50) NOT NULL ,

priority INTEGER CHECK (priority <= 6 AND priority >= 0),

description VARCHAR (1000) NOT NULL ,

dueDate DATETIME NOT NULL ,

archived VARCHAR (5) CHECK(archived IN(’True’, ’False ’)),

12

Design Report UptownFANK

finished VARCHAR (5) CHECK(finished IN(’True’, ’False ’)),

FOREIGN KEY listID REFERENCES List(listID)

);

3.10 PerformsTask

Relational Model: PerformsTask(cardID, userID)

Functional Dependencies: {}

Primary Key: {cardID, userID}

Candidate Keys: {{cardID, userID}}

Foreign Keys: {(cardID −→ Card.cardID), (userID −→ User.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE PerformsTask(

cardID INTEGER ,

userID INTEGER ,

PRIMARY KEY (cardID , userID),

FOREIGN KEY userID REFERENCES User(userID),

FOREIGN KEY cardID REFERENCES Card(cardD)

);

3.11 CheckList

Relational Model: CheckList(checklistID, name, checkStatus, description, relat-

edCard)

Functional Dependencies: {(checklistID −→ name, checkStatus, description, re-

latedCard)}

Primary Key: {checklistID}

13

Design Report UptownFANK

Candidate Keys: {{checklistID}}

Foreign Keys: {(relatedCard −→ Card.cardID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE CheckList(

checklistID INTEGER PRIMATY KEY ,

name VARCHAR (50) NOT NULL ,

checkStatus VARCHAR (5) CHECK(checkStatus IN(’True’, ’False ’)),

description VARCHAR (1000) NOT NULL ,

relatedCard INTEGER ,

FOREIGN KEY relatedCard REFERENCES Card(cardID)

);

3.12 Item

Relational Model: Item(itemID, relatedChecklist, completedStatus, content, com-

pletor)

Functional Dependencies: {(itemID, relatedChecklist −→ completedStatus, con-

tent, completor)}

Primary Key: {itemID, relatedChecklist}

Candidate Keys: {{itemID, relatedChecklist}}

Foreign Keys: {(relatedChecklist −→ CheckList.checklistID), (completor −→ Basi-

cUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Item(

itemID INTEGER PRIMARY KEY ,

relatedCheckList INTEGER NOT NULL ,

14

Design Report UptownFANK

completedStatus VARCHAR (5),

content VARCHAR (1000) NOT NULL ,

completor INTEGER NOT NULL ,

CHECK(completedStatus IN(’True’, ’False’)),

FOREIGN KEY relatedCheckList REFERENCES CheckList(checklistID)

FOREIGN KEY completor REFERENCES BasicUser(userID)

);

3.13 Comment

Relational Model: Comment(commentID, relatedCard, timestamp, resolvedSta-

tus, commenter, text)

Functional Dependencies: {(commentID, relatedCard −→ timestamp, resolved-

Status, commenter, text)}

Primary Key: {commentID, relatedCard}

Candidate Keys: {{commentID, relatedCard}}

Foreign Keys: {(relatedCard −→ Card.cardID), (commenter −→ BasicUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Comment(

commentID INTEGER ,

relatedCard INTEGER NOT NULL ,

timestamp TIMESTAMP NOT NULL ,

resolvedStatus VARCHAR (5),

commenter INTEGER NOT NULL ,

text VARCHAR (1000) NOT NULL ,

PRIMARY KEY (commentID , relatedCard),

FOREIGN KEY relatedCard REFERENCES Card(cardID),

FOREIGN KEY commenter REFERENCES BasicUser(userID),

15

Design Report UptownFANK

CHECK(resolvedStatus IN(’True’, ’False’))

);

3.14 Replies

Relational Model: Replies(replyID, relatedCard, commentID)

Functional Dependencies: {(replyID, relatedCard −→ commentID)}

Primary Key: {replyID, relatedCard}

Candidate Keys: {{replyID, relatedCard}}

Foreign Keys: {(replyID, relatedCard −→ Comment.(commentID, relatedCard)),

(commentID, relatedCard −→ Comment.(commentID, relatedCard))}

Normal Form: BCNF

Table Definition:

CREATE TABLE Replies(

replyID INTEGER NOT NULL ,

commentID INTEGER NOT NULL ,

relatedCard INTEGER NOT NULL ,

PRIMARY KEY (replyID , relatedCard),

FOREIGN KEY (replyID , relatedCard) REFERENCES

Comment(commentID , relatedCard),

FOREIGN KEY (commentID , relatedCard) REFERENCES

Comment(commentID , relatedCard)

);

3.15 Upvotes

Relational Model: Upvotes(userID, commentID, relatedCard)

Functional Dependencies: {}

16

Design Report UptownFANK

Primary Key: {userID, commentID, relatedCard}

Candidate Keys: {{userID, commentID, relatedCard}}

Foreign Keys: {(commentID, relatedCard−→ Comment.(commentID, relatedCard)),

(userID −→ BasicUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Upvotes(

userID INTEGER NOT NULL ,

commentID INTEGER NOT NULL ,

relatedCard INTEGER NOT NULL ,

PRIMARY KEY (userID , commentID relatedCard),

FOREIGN KEY userID REFERENCES BasicUser(userID),

FOREIGN KEY (commentID , relatedCard) REFERENCES

Comment(commentID , relatedCard)

);

3.16 Attachment

Relational Model: Attachment(attachmentID, name, size, uploadDate, descrip-

tion, attacher, relatedCard)

Functional Dependencies: {(attachmentID −→ name, size, uploadDate, descrip-

tion, attacher, relatedCard)}

Primary Key: {attachmentID}

Candidate Keys: {{attachmentID}}

Foreign Keys: {(attacher −→ BasicUser.userID), (relatedCard −→ Card.cardID)}

Normal Form: BCNF

Table Definition:

17

Design Report UptownFANK

CREATE TABLE Attachment(

attachmentID INTEGER PRIMARY KEY ,

name VARCHAR (50) NOT NULL ,

size INTEGER NOT NULL ,

uploadDate DATETIME NOT NULL ,

description VARCHAR (1000) NOT NULL ,

attacher INTEGER NOT NULL ,

relatedCard INTEGER NOT NULL ,

FOREIGN KEY attacher REFERENCES BasicUser(userID),

FOREIGN KEY relatedCard REFERENCES Card(cardID)

);

3.17 Label

Relational Model: Label(labelID, color, text, importance, adder)

Functional Dependencies: {(labelID −→ color, text, importance, adder)}

Primary Key: {labelID}

Candidate Keys: {{labelID}}

Foreign Keys: {(adder −→ BasicUser.userID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Label(

labelID INTEGER PRIMARY KEY ,

color VARCHAR (50) NOT NULL ,

text VARCHAR (100) NOT NULL ,

importance INTEGER CHECK(0 < importance <= 5),

adder INTEGER NOT NULL ,

FOREIGN KEY adder REFERENCES BasicUser(userID)

);

18

Design Report UptownFANK

3.18 Labelling

Relational Model: Label(cardID, labelID)

Functional Dependencies: {}

Primary Key: {cardID, labelID}

Candidate Keys: {{cardID, labelID}}

Foreign Keys: {(cardID −→ Card.cardID), (labelID −→ Label.labelID)}

Normal Form: BCNF

Table Definition:

CREATE TABLE Labelling(

cardID INTEGER NOT NULL ,

labelID INTEGER NOT NULL ,

FOREIGN KEY cardID REFERENCES Card(cardID),

FOREIGN KEY labelID REFERENCES Label(labelID)

);

4 Functional Dependencies and Normalization

As already shown in the previous section, all of our relation schemas are in Boyce

Codd Normal Form (BCNF). This can be easily checked by the fact that all the

functional dependencies contain a candidate key in their left hand side. Therefore,

we do not need to perform any decomposition or normalization on our system’s

tables.

5 Functional Components

In this section we will introduce the Use-Case diagram of Uptown Fank System,

followed by detailed scenarios and the usage of chosen data structures.

19

Design Report UptownFANK

5.1 Use Case Diagram

Figure 2: Use Case Diagram

20

Design Report UptownFANK

5.2 Use Case Scenarios

POTENTIAL USER GROUP: SUPERUSER

5.2.1 CreateTeam

5.2.2 ManageTeam

21

Design Report UptownFANK

5.2.2.1 DeleteTeam

5.2.2.2 AddMember

22

Design Report UptownFANK

5.2.2.3 RemoveMember

5.2.3 CreateBoard

23

Design Report UptownFANK

5.2.4 AddList

5.2.5 SetUserPrivileges

24

Design Report UptownFANK

5.2.6 ManageBoard

5.2.6.1 ManageCards

25

Design Report UptownFANK

5.2.6.2 ManageLists

5.2.6.3 Archive

26

Design Report UptownFANK

5.2.6.4 AssignUser

POTENTIAL USER GROUP: BASICUSER

5.2.7 AddAttachment

27

Design Report UptownFANK

5.2.8 AddLabel

5.2.9 ManageAttachments

28

Design Report UptownFANK

5.2.10 ManageLabels

5.2.11 AddChecklist

29

Design Report UptownFANK

5.2.11.1 CompleteItem

5.2.12 Comment

30

Design Report UptownFANK

5.2.12.1 Reply

5.2.13 Register

31

Design Report UptownFANK

5.2.13.1 RegisterAsSuperUser

5.2.13.2 RegisterAsBasicUser

32

Design Report UptownFANK

5.3 Data Structures

In our relation schemas we used the following data types: Integer, Varchar, Date

and Timestamp.

• Integer: This is used for all possible IDs belonging to different entities in our

system. Integers are simple and appropriate for this purpose since we only

need an identifying data type and it won’t have complexities (such as decimal

points etc).

• Varchar: This datatype is used for almost all possible “content” filling in the

different tables that we have created. The size of the Varchar ranges based on

the attribute that is going to be represented with this data type, as mainly

explained in the following:

– For names, we have used a varchar of size 50 since we account for First,

Middle and Last name. We have also used the same size for emails,

passwords and addresses.

– For blocks of description (these belong to various main parts of our sys-

tem, including boards, lists and cards), we have used a varchar of size

1000. The system considers the average size of a word as 5 characters.

Since the length or duration of words is clearly variable, for the purpose

of measurement of text entry, the definition of each “word” is often stan-

dardized to be five characters or keystrokes long in English [2]. In this

way, our system accounts for a paragraph of around 200 words.

– For attributes which will give completes status information and the like,

we want the value of that column to be either “true” or “false” since these

two words are universal. For this reason, size of the varchar is at most 5.

– For affiliations and organizations, the system uses a varchar of size 200

at most.

• Date and Timestamp are used for representing specific deadlines, as well as

showing the exact time when comments were posted.

33

Design Report UptownFANK

In the front-end, we will be using various HTML rendered lists and tables.

6 User Interface Design and Corresponding SQL

Statements

In this section we provide sketches of GUI and corresponding SQL queries for the

system’s major tasks for achieving the functionality requirements.

NOTE: We have divided “view” option for a particular user into homescreen and

specific components. For this reason, the functionalities are divided into 6 main

groups.

34

Design Report UptownFANK

6.1 Register and Login Functionalities

6.1.1 Register Screen

Figure 3: Register Screen

6.1.1.1 BasicUser

—Registering a user

INSERT INTO BasicUser(name, email, password, address) VALUES(’Naisila’,

’naisila.puka@ug.bilkent.edu.tr’, @password, ’Bilkent Main Campus’);

35

Design Report UptownFANK

—totalPhone will hold the total number of phone numbers the user enters

for(i = 1 up to totalPhone){

INSERT INTO Phone(userID, phoneNo) VALUES (SELECT userID FROM Basi-

cUser WHERE email = ’naisila.puka@ug.bilkent.edu.tr’) , @phoneNo[i]);

}

6.1.1.2 SuperUser

—Additional to the operations performed in BasicUser, we also insert into SuperUser

table

INSERT INTO SuperUser(userID, organization) VALUES (SELECT userID FROM

BasicUser WHERE email EQUAL ’naisila.puka@ug.bilkent.edu.tr’), ’Bilkent Uni-

versity’);

36

Design Report UptownFANK

6.1.2 Login Screen

Figure 4: Login Screen

—To check whether the information entered is valid, we will use the following query

SELECT email, password FROM BasicUser WHERE email = ’theRestingGondolier’

AND password = @password;

37

Design Report UptownFANK

6.2 View Main Personal Info

6.2.1 Personal Homescreen

Figure 5: Homepage

—Show all teams that the Superuser Manages:

SELECT T.name FROM Team T WHERE T.supervisor = 5321;

—Show all teams that the user is part of:

SELECT T.name FROM Team T NATURAL JOIN Member M WHERE T.userID

= 5321;

38

Design Report UptownFANK

—Show all the boards that the user owns:

SELECT B.name FROM Board B WHERE B.ownerId = 5321;

—Show personal info of the user:

SELECT U.name FROM BasicUser U WHERE U.userID = 5321;

—Extra info for SuperUser’s:

SELECT COUNT(boardID) FROM Board B JOIN SuperUser U ON U.userID =

B.ownerID WHERE u.userID = 5321;

SELECT organisation FROM SuperUser WHERE userID = 5321;

39

Design Report UptownFANK

6.3 View Boards/Lists/Cards

6.3.1 View Board Screen

Figure 6: View Board Screen

—Create new List

INSERT INTO List(listID, name, finishedStatus, color, description, activity, boar-

dID) VALUES (1000, ‘sec2’, ‘False’, ‘Blue’, ‘Here we manage all reports’ ,‘First

report finished’, 1010);

40

Design Report UptownFANK

—Create New Card

INSERT INTO Card(cardID, name, priority, description, dueDate, listID,archived,

finished) VALUES (458, ’Design Report’, 3, ‘write introduction’, ‘10/5/2019-10:00’,

5610, ‘False’, ‘False’);

6.3.2 View Card Screen

Figure 7: View Card Screen

—Show card’s general info

SELECT C.name, C.priority, C.description FROM Card C WHERE C.listID =

10010;

41

Design Report UptownFANK

—Show the names of the users that are assigned this card, assign a new user to

this card or remove a user from the card

SELECT name FROM (SELECT userID FROM Card C NATURAL JOIN Performs

P WHERE C.cardID = 7810) NATURAL JOIN User U;

INSERT INTO PerformsTask(cardID, userID) VALUES (3333, 1000);

DELETE FROM PerformsTask(cardID, userID) VALUES (3333, 1000);

—Shows all labels associated with the Card

SELECT L.text, L.color , L.priority FROM LABELLING LBS NATURAL JOIN

LABEL L WHERE LBS.cardID = 10;

— Comment on a card and reply to a comment

INSERT INTO Comment(commentID, relatedCard, timestamp, resolvedStatus,

commenter, text) VALUES(5450, 3333, ’10/10/2019-15:03’, ’False’, 5555, ’How do

you write a SQL query?’);

INSERT INTO Comment(commentID, relatedCard, timestamp, resolvedStatus,

commenter, text) VALUES(1234, 3333, ’10/10/2019-15:06’, ’False’, 6789, ’Google

it!’);

INSERT INTO Replies(replyID, relatedCard, commentID) VALUES (1234, 3333,

5450);

42

Design Report UptownFANK

6.4 Create Team and Board

6.4.1 Create Team Screen

Figure 8: Create Team Screen

—Create Team

INSERT INTO Team (teamID, name, affiliation, supervisor, key) VALUES (3333,

’CS353’, ‘ Hello students!’, @userID, 112233);

—Insert member into team

INSERT INTO Member(userID, teamID) VALUES (55687, 5050);

INSERT INTO Member(userID, teamID) VALUES (33325, 500);

43

Design Report UptownFANK

—Delete member from team

DELETE FROM Member WHERE teamID = 500 AND userID = 55687 ;

6.4.2 Create Board Screen

Figure 9: Create Board Screen

—Create new Board

INSERT INTO Board (boardID, name, description, priority, color , requirements,

expectedTime) VALUES(0654, ‘CS353Board’, ’This will be used for CS353’, 5,

‘Yellow’, ‘Database project’, ‘10/5/2019- 10:30’);

INSERT INTO WorksOn(boardId, teamID) VALUES (0654, 500);

44

Design Report UptownFANK

6.5 Create List and Card

6.5.1 Create List Screen

Figure 10: Create List Screen

—Create a list:

INSERT INTO List(listID, name, finishedStatus, color, description, activity,boardID)

VALUES (1239, ’list3’, ’False’, ’Yellow’, ’List of sec2’, ’added class members to list’,

445566);

45

Design Report UptownFANK

6.5.2 Create Card Screen

Figure 11: Create Card Screen

—Creates a new card

INSERT INTO Card(cardID, name, priority, description, dueDate, listID,archived,

finished) VALUES(998877, ’card2’, 5, ’Tasks to perform by TA’, ’15/09/2019-

10:45’, 5464, ’False’, ’False’);

46

Design Report UptownFANK

6.6 Add CheckLists, Attachments, Labels

6.6.1 Create CheckList Screen

Figure 12: Create CheckList Screen

—Creates a CheckList

INSERT INTO CheckList(checklistID, name, checkStatus, description, related-

Card) VALUES (7897, ’project to do list:’, ’False’, ’A list of tasks’, 456875);

47

Design Report UptownFANK

6.6.2 Create Label Screen

Figure 13: Create Label Screen

—Creates a Label

INSERT INTO Label(labelID, color, text, importance, adder) VALUES (455487,

’Black’, ’Databaze’, 6, 48795);

7 Advanced Database Components

We will consider various advanced database components for UptownFANK, as are

explained in the following subsections.

48

Design Report UptownFANK

7.1 Reports

In order to provide insightful analysis about our software, we have prepared the

following reports:

• The team with the largest number of members, along with its supervisor and

the number of members:

WITH membersNo AS(SELECT teamID, COUNT(userID) as memberCount

FROM Member GROUP BY teamID)

SELECT t.name, t.supervisor, m.memberCount FROM Teams t NATURAL

JOIN membersNo m

WHERE m.memberCount >= ALL (SELECT memberCount FROM mem-

bersNo);

• Users who are part of all projects supervised by a particular user:

SELECT u.name, u.email FROM BasicUser u WHERE NOT EXISTS(

(SELECT t.teamID FROM Teams t WHERE t.supervisor = @particularID)

EXCEPT

(SELECT m.teamID FROM Member m WHERE m.userID = u.userID));

• 10 Most popular cards in the whole database based on their comments, along

with the list and board they belong to:

WITH commentsNo AS(SELECT relatedCard AS cardID, COUNT(commentID)

AS commentsNo FROM Comment GROUP BY relatedCard)

SELECT c.name AS CardName, c.commentsNo AS NumberOfComments, l.name

AS ListName, b.name AS BoardName

FROM commentsNo c JOIN Card cd JOIN List ls JOIN Board b

ON(c.cardID = cd.cardID AND cd.listID = ls.listID AND ls.boardID = b.boardID)

ORDER BY c.commentsNo DESC LIMIT 10;

49

Design Report UptownFANK

7.2 Views

Our system’s main views will be explained in the following sub sections.

7.2.1 Owned Boards

This view will provide the system with all the owned board names of a particular

superuser of our software. It will be used in the personal homepage of a superuser, so

that he/she can directly see what he/she is in charge of, ordered by their priorities.

CREATE VIEW OwnedBoards AS (SELECT B.name, B.estimatedTime, B.priority

FROM Board B JOIN SuperUser U ON U.userID = B.ownerID WHERE U.userID

= @userID ORDER BY B.priority DESC);

7.2.2 Users Assigned to a Card

This view will provide the system with all the names and emails of the assigned

users to a particular card. It will be used in View Card Screen, where every person

can see all the assigned users at a particular card. This could be useful in order to

provide communication between users who have been assigned the same job.

CREATE VIEW AssignedUsers AS (SELECT name, email FROM (SELECT userID

FROM Card C NATURAL JOIN Performs P WHERE C.cardID = @cardID) NAT-

URAL JOIN User U);

7.2.3 Cards a User Is Assigned to

This view will provide the system with all the names, priorities, descriptions and

due dates of all the cards a particular user was assigned to. The view will be used

in the personal homepage of each user, so that he can easily see in which cards his

work is located.

50

Design Report UptownFANK

CREATE VIEW AssignedCards AS (SELECT C.name, C.priority, C.description,

C.duedate FROM (SELECT cardID FROM Performs P WHERE P.userID = @userID)

NATURAL JOIN Card C);

7.3 Triggers

We will implement the following triggers, which go back to back with the contraints

in the other section as well:

• When a SuperUser inserts a new member to a team the system firstly checks

if there are less than 30 members in the team and then allows the addition of

the new member. If insertion is valid, all views and reports will be accordingly

updated.

• On the other hand, if a SuperUser is trying to delete a member from a team,

the system will enforce the trigger of checking whether that team has more

than 1 member left after deletion. If deletion is valid, all views and reports

will be accordingly updated.

• When the owner of a board tries to assign a specific card to a user, the system

will check if the number of assigned users to that particular card has exceeded

the maximum of 10 after assignment. If assignment is valid, all views and

reports will be accordingly updated.

7.4 Constraints

Our system will impose the following constraints:

• A team can have at most 30 members and at least 2 members, that is, the

supervisor and another person.

• A checklist can have at most 20 items. Note here, that in case the user is not

satisfied with 20 items, he/she could rather create more than one checklist.

The aim of our system is to make the project as easy to track as possible. We

want to enforce Divide and Conquer approach to project management.

51

Design Report UptownFANK

• A card can be assigned to at most 10 people. If more than 10 people are

needed to finish the job of a card, then a list should be considered instead of

a card.

• The system does not support offline access, and a user has to be logged in

his/her account in order to navigate through the software.

• A user can only edit a card that the user has been assigned, not the other

cards. The user can only view the other cards.

• A comment can be deleted only by the commenter or the supervisor of the

board that the card is part of.

7.5 Stored Procedures

We plan to use the following stored procedures:

• Check an Item in a Checklist: Every time a user checks an item in the

checklist, check status changes from false to true, and then further conditions

are checked. First, if the checklist has no more unchecked items, we change

the status of the checklist to finished. After that, checks on the whole card are

made as well, because in case there is no unfinished checklist in the card, we

change the status of the card to finished as well. This procedure does not vary

between different item checks, therefore we chose to use a stored procedure.

• Delete a Card: Deletion of a card will not be straightforward. Rather, the

system will go through safety check procedure. For every checklist in the card,

the system will find all items that have not been checked. For every attachment

in the card, the system will find them and then will present them to the user.

A notification will arise indicating each unchecked item in the checklists within

that card and each attachment pertaining to that card. The user will be asked

whether he/she is sure for the deletion of that card. Only after indicating a

positive answer, the corresponding SQL query will be executed.

52

Design Report UptownFANK

8 Implementation Plan

In this project we plan to use PHP for the system’s back-end web service, along with

the MySQL database. In front-end, we will create a website using HTML/CSS.

9 Online Access

Our project can be accessed online through our:

Webpage: https://uptownfank.github.io

GitHub: https://github.com/NaisilaPuka/uptownfank (currently private)

10 Conclusion

With this project, we aim to get the best out a database management system in

order to create a useful tool for tracking various projects divided to different teams.

Having put a lot of thought in proper relation schemas and in normalizing them, we

try to make our system as efficient as possible. Making use of different entities and

relationships, the database system will provide full referential integrity for us, which

will make UptownFANK a reliable and safe system to use for maintaining project

information.

53

Design Report UptownFANK

References

[1] “Draw.io: free online diagram software for making flowcharts, process diagrams,

org charts, UML, ER and network diagrams,” draw.io. [ONLINE]. Available at:

https://www.draw.io/. [Accessed: March 4, 2019]

[2] “Words per minute,” wikipedia.org. [ONLINE]. Available at: https://en.

wikipedia.org/wiki/Words_per_minute. [Accessed: April 4, 2019]

54

